Pii: S0025-5564(99)00049-8

نویسندگان

  • Alfredo Porati
  • Maria Ilde Granero
چکیده

We show via a Liapunov function that in every model ecosystem governed by generalized Lotka±Volterra equations, a feasible steady state is globally asymptotically stable if the number of interaction branches equals nÿ 1, where n is the number of species. This means that the representative graph for which the theorem holds is a `tree' and not only an alimentary chain. Our result is valid also in the case of nonhomogeneous systems, which model situations in which input ̄uxes are present. Ó 2000 Elsevier Science Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0025-5564(00)00049-3

A two-dimensional bio®lm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of bio®lm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real bio®lm systems. Bulk nutri...

متن کامل

Pii: S0025-5564(99)00060-7

Null models for generating binary phylogenetic trees are useful for testing evolutionary hypotheses and reconstructing phylogenies. We consider two such null models ± the Yule and uniform models ± and in particular the induced distribution they generate on the number Cn of cherries in the tree, where a cherry is a pair of leaves each of which is adjacent to a common ancestor. By realizing the p...

متن کامل

Pii: S0025-5564(00)00033-x

In this paper, we establish a mathematical model of two species with stage structure and the relation of predator±prey, to obtain the necessary and sucient condition for the permanence of two species and the extinction of one species or two species. We also obtain the optimal harvesting policy and the threshold of the harvesting for sustainable development. Ó 2000 Elsevier Science Inc. All rig...

متن کامل

Pii: S0025-5564(00)00005-5

We consider a single-species model which is composed of several patches connected by linear migration rates and having logistic growth with a threshold. We show the existence of an aggregating mechanism that allows the survival of a species which is in danger of extinction due to its low population density. Numerical experiments illustrate these results. Ó 2000 Elsevier Science Inc. All rights ...

متن کامل

Pii: S0025-5564(99)00054-1

Multi-species Lotka±Volterra models exhibit greater instability with an increase in diversity and/or connectance. These model systems, however, lack the likely behavior that a predator will prey more heavily on some species if other prey species decline in relative abundance. We ®nd that stability does not depend on diversity and/or connectance in multi-species Lotka±Volterra models with this `...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999